End User Documentation

Section 1 General System Description & Critical Data (Spec Sheet)

Model	TurtleBot 3	
Dimensions	272 mm x 302 mm x 192 mm (L x B x H) 272 mm 272 mm	
Battery Capacity/	11 1 V 1800 mAh (1 8 Ah) LiPo	
Battery Capacity/ Operating Life	11.1 V, 1800 mAh (1.8 Ah) LiPo 80 minutes normal, minimum 26 minutes under heavy load	

Operation	 Navigates autonomously with Nav2 stack (path planning & obstacle avoidance). Detects heat sources using AMG8833 thermal sensors. Shoots ping pong balls using a brushless motor-powered flywheel launcher. Uses ROS2, custom Python scripts, and C++ for control.
Common Trouble- shooting	 Navigation failure: Restart Nav2 stack; check SLAM localization and RViz visualization Heat sensor missing source: Ensure both AMG8833s are functional; Wrong identification of source location: Ensure front of lidar and AMG8833 are the same Launcher malfunction: Check motor ESC connections, flywheel tightness, and motor RPMs.

	- Spiral tube is misaligned, balls do not slide down: add a weight at the end to ensure all the balls slide down smoothly.
Safety and precautionary measures	 Only operate in open, obstacle-free environments. Avoid touching flywheels while powered (risk of injury). Monitor battery to prevent voltage drop below 9V. Prevent exposure to liquids or moisture.

Section 2: Technical Guide

Software Setup:

Install Nav2 Stack:

- Git clone the nav2 folder into the colcon_ws: https://github.com/ROBOTIS-GIT/turtlebot3
- Git clone our code from bot_bestie branch: <u>https://github.com/Lilyflower77/r2auto_nav_CDE2310/tree/bot_bestie</u>
- Run "colcon build" to build all dependencies

If missing any packages, run: conda install [package name]

Deployment

Step 1: Load ping pong balls into spiral from open end

Step 2: Turn TurtleBot on

- Step 3: ssh into turtlebot
- Step 4: run 'rosbu' on bot
- Step 5: run 'slamtoolbox' on PC

ros2 launch slam_toolbox online_async_launch.py use_sim_time:=false

Step 6: run

ros2 launch bot_bestie global_bringup.py

Expected Output: Robot will start mapping the area and start recording Hot areas. After mapping, the bot will go to hot areas and launch ping pong balls upwards.

Section 3: Acceptable Defect Log

Defect no.	Defect	Justification
1	Minor cracks on spiral/tube	If there is no hindrance to the movement of the ping pong balls, there will be no negative effect on the bot's intended operation
2	Two spiral parts not perfectly aligned	If the ping pong balls roll down the spiral successfully, there will be no negative effect on the bot's intended operation
3	Small number of screws /nuts drop off/missing	The bot is designed to function without the fasteners. There will be no severe negative impact on operation.
4	Missing/unstable stand-off	At least 3 stand-offs per layer is required for stability. One unstable/missing stand-off out of five per layer is acceptable.
5	Platform rises on startup	PWM jitter on raspberry pi startup, push platform down to lowest position before commencing

Section 4 Factory Acceptance Test

Test Description	Expected Outcome	Test Done
Run 'rteleop' test for ability to move	Bot follows all commands and move in right direction	Y
Run ' <i>rosbu</i> ' on startup	Flywheels will generate two different sequence of tones	Y
Run ' <i>rosbu</i> ' and let it map a maze	9/10 successful runs; under 8 mins per run. >95% accuracy of maze on Rviz	V
Run ' <i>rosbu</i> ' and let it map an area with obstacles.	95% success rate. Area mapped with ≤1 collision in 20 runs	Y
Heat source detection (static test) Run 'rosbu' with heat in front of bot	Output: ' 🔥 🔥 🔥 FIRE' in terminal 100% detection within 2 m	$\mathbf{\mathbf{n}}$
Launcher test by running ros2 topic pub /flywheel std_msgs/msg/Int32 "{data: 50}" (single launch message received)	Launches 3 balls successfully, ball clears 1.5 m wall height, no jams, 2 -4 -2 timing	

Section 5 Maintenance and Part Replacement Log

Date	Part Replaced	Issue